Popular Posts Today

Diberdayakan oleh Blogger.

Landing pads being designed for extraterrestrial missions

Written By empapat on Kamis, 20 September 2012 | 07.35

ScienceDaily (Sep. 20, 2012) — When the Mars Science Laboratory's Curiosity rover landed on Aug. 6, it was another step forward in the effort to eventually send humans to the Red Planet. Using the lessons of the Apollo era and robotic missions to Mars, NASA scientists and engineers are studying the challenges and hazards involved in any extraterrestrial landing.

The technology is known as "vertical takeoff-vertical landing." According to a group working in NASA's Engineering and Technology Directorate at the Kennedy Space Center in Florida, the best approach requires a landing pad already be in place.

"One of the greatest challenges to Apollo astronauts landing on the moon was dust, rocks and debris obscuring their vision during the final part of the descent," said Rob Mueller, a senior technologist in Kennedy's Surface Systems Office and Lunar Destination co-lead for NASA's Human Spaceflight Architecture Team. "When the Apollo lunar modules reached the 30-meter point (about 100 feet), the dust was like a fog making it difficult to see their landing site. Similarly, photographs show there were some rocks and dust kicked up by the rocket engines on the sky-crane lowering the Curiosity lander onto the Martian surface."

As the Mars Science Laboratory's descent stage used rocket engines to hover, its sky crane lowered the Curiosity rover with a 25-foot tether to a soft landing on the surface.

Mueller and others are working on ways to develop landing pads that could be robotically constructed in advance of future human expeditions to destinations such as the moon or Mars. These specially constructed landing sites could greatly reduce the potential for blowing debris and improve safety for astronauts who make the trip to Mars or another destination.

"Our best estimates indicate that descent engines of the Apollo landers were ejecting up to one-and-a-half tons of rocks and soil," said Dr. Phil Metzger, a research physicist in Kennedy's Granular Mechanics and Regolith Operations Laboratory. "It will be even more challenging when we land humans on Mars. The rocket exhaust will dig a deep hole under the lander and fluidize the soil. We don't know any way to make this safe without landing pads."

Building a landing site in advance of human arrival is part of the plan.

"Robotic landers would go to a location on Mars and excavate a site, clearing rocks, leveling and grading an area and then stabilizing the regolith to withstand impact forces of the rocket plume," Mueller said. "Another option is to excavate down to bedrock to give a firm foundation. Fabric or other geo-textile material could also be used to stabilize the soil and ensure there is a good landing site."

Metzger explained that one of the ways to ensure an on-target landing would be to have robotic rovers place homing beacons around the site.

"Tracking and homing beacons would help a spacecraft reach the specific spot where the landing pad had been constructed," he said.

Landing pad technology may be perfected on Earth well in advance of its use elsewhere in the solar system.

"Several commercial space companies are already discussing returning rocket stages to Kennedy or Cape Canaveral saving on the cost of sending payloads to low Earth orbit," Mueller said. "Rather than the first stage simply falling into the ocean, the rocket would land vertically back here at the Cape to be reused."

While landing pads will provide a smooth touchdown location, they will also require advanced technology design and decisions on how large the landing pad should be.

"One of the factors we have to consider is the atmosphere where a landing will take place," Metzger said. "The Earth has a dense atmosphere that focuses the rocket exhaust onto the ground, but also reduces how far the ejected material is dispersed. Mars, on the other hand, has an atmospheric density that is 1 percent that of Earth. It still focuses the plume into a narrow jet that digs into the soil, but it provides less drag so the ejected soil will actually travel farther.

"Then compare that to the moon with no atmosphere," he said. "The plume won't be focused so it won't dig a deep hole in the soil, but the ejected material will travel vast distances at high velocity. It is like a sandblaster on steroids. So the requirements for a landing pad are determined by the destination we're landing on."

Metzger envisions circular landing pads from about 50 to 100 meters (about 165 to 330 feet) in diameter.

"The specialized material taking the heat of the engine plume would be in the middle," he said. "The area surrounding the center would be designed to hold up support equipment."

Another issue is what substances to use in building the landing pads.

"Tests with prototype landers show that while pads are safer than touching down on natural surfaces, certain pad materials can produce debris of their own," Metzger said. "A supersonic rocket exhaust becomes extremely hot when it impacts a surface. Asphalt or concrete are out of the question because the temperature causes those materials to break apart, throwing chunks of material in all directions."

During investigations of prototype landers, various materials have been examined on the pads from which the vehicles have vertically taken off and landed.

"We've tested several types of materials and it seems that basalt regolith mixed with polymer binders hold up well," Metzger said.

However, the one substance for landing pads that shows the most promise is the material used on spacecraft heat shields.

"Of all the substances we studied, ablative materials seem to work best," Metzger said.

Ablative substances were used on the heat shields for spacecraft during Mercury, Gemini and Apollo. The heat of re-entry was dissipated by burning off successive layers.

"While ablative materials seem to work well, the layers will eventually all burn away," Mueller said. "So next we may try reusable thermal protection material similar to that used on the space shuttle tiles or the Orion capsules."

A human expedition to Mars is still many years away, but Mueller says now is the time to start planning for how to land on another planet.

"The technology we envision will take 10 to 15 years to develop," he said. "We need to begin verifying that these concepts will work, and that's why we are already involved in the research."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by NASA.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/mAtm2NEa1QY/120920101035.htm
--
Manage subscription | Powered by rssforward.com
07.35 | 0 komentar | Read More

New airport system facilitates smoother take-offs and landings

Written By empapat on Rabu, 19 September 2012 | 20.15

ScienceDaily (Sep. 19, 2012) — For airline passengers who dread bumpy rides to mountainous destinations, help may be on the way. A new turbulence avoidance system has for the first time been approved for use at a U.S. airport and can be adapted for additional airports in rugged settings across the United States and overseas.

The system, developed by the National Center for Atmospheric Research (NCAR), provides information pilots can use to route aircraft away from patches of potentially dangerous turbulence. It uses a network of wind measuring instruments and computational formulas to interpret rapidly changing atmospheric conditions.

The Federal Aviation Administration formally commissioned the system in July for Alaska's Juneau International Airport. NCAR researchers can now turn their attention to adapting the system to other airports that often have notoriously severe turbulence, in areas ranging from southern California and the Mountain West to Norway and New Zealand.

The Juneau system was patterned after a similar system, also designed by NCAR, that has guided aircraft for several years at Hong Kong's heavily trafficked Chek Lap Kok Airport.

"By alerting pilots to areas of moderate and severe turbulence, this system enables them to fly more frequently and safely in and out of the Juneau airport in poor weather," says Alan Yates, an NCAR program manager who helped oversee the system's development. "It allows pilots to plan better routes, helping to reduce the bumpy rides that passengers have come to associate with airports in these mountainous settings."

The system offers the potential to substantially reduce flight delays. In Alaska's capital city, where it is known as the Juneau Airport Wind System or JAWS, it enables the airport to continue operations even during times of turbulence by highlighting corridors of smooth air for safe take-offs and landings.

"The JAWS system has nearly eliminated all the risk of flying in and out of Juneau," says Ken Williams, a Boeing 737 captain and instructor pilot with Alaska Airlines. "I wish the system would be deployed in other airports where there are frequent encounters with significant turbulence, so pilots can get a true understanding of what the actual winds are doing on the surrounding mountainous terrain as you approach or depart."

The project was funded by the Federal Aviation Administration. NCAR is sponsored by the National Science Foundation.

Steep terrain, rough rides

Turbulence has long been a serious concern for pilots approaching and departing airports in steep terrain. Rugged peaks can break up air masses and cause complex and rapidly changing patterns of updrafts and downdrafts, buffeting an aircraft or even causing it to unexpectedly leave its planned flight path.

In Juneau, after several turbulence-related incidents in the early 1990s -- including one in which a jet was flipped on its side during flight and narrowly avoided an accident -- the FAA imposed strict rules of operation that effectively shut down the airport during times of atmospheric disturbance. The agency then asked NCAR to develop a system that would allow pilots to avoid regions of turbulence. Otherwise, Alaska's capital would be isolated at many times from the rest of the state, since the only way to travel in and out of Juneau is by airplane or boat.

The NCAR team used research aircraft and computer simulations to determine how different wind patterns -- such as winds that come from the north over mountains and glaciers and winds that come from the southeast over water -- correlated with specific areas of turbulence near the airport. To do this they installed anemometers and wind profilers at key sites along the coast and on mountain ridges. The team has installed ruggedized, heated instruments that can keep functioning even when exposed to extreme cold, wind, and heavy icing conditions.

The Federal Aviation Administration accepted JAWS for operational use this year. The five anemometer sites and three wind profiler sites around the airport transmit data multiple times every minute. Pilots can get near-real-time information about wind speed and direction, and a visual readout showing regions of moderate and severe turbulence in the airport's approach and departure corridors, from the FAA's Flight Service Station or online at a National Weather Service website.

"Juneau was an extremely challenging case, and we're pleased that the new system met the FAA's high standards," Yates says. "We look forward to exploring opportunities to support development of turbulence avoidance systems at additional airports. Our goal is to improve flying safety and comfort for millions of passengers."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by National Center for Atmospheric Research (NCAR).

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/Zplo-Qv2_wA/120919124852.htm
--
Manage subscription | Powered by rssforward.com
20.15 | 0 komentar | Read More

Protecting our harbors and ships with a robotic tuna fish

ScienceDaily (Sep. 19, 2012) — No question about it… they're very good at what they do. But they don't take well to orders, especially those to carry out inspection work in oily or dangerous environments, or in any kind of harsh environment, for that matter. Still, they're one of the fastest and most maneuverable creatures on the planet, having extraordinary abilities at both high and low speeds due to their streamlined bodies and a finely tuned muscular/sensory/control system.

This impressive creature is the humble tuna fish.

The Department of Homeland Security's (DHS) Science and Technology Directorate (S&T) is funding the development of an unmanned underwater vehicle designed to resemble a tuna, called the BIOSwimmer™. Why the tuna? Because the tuna has a natural body framework ideal for unmanned underwater vehicles (UUVs), solving some of the propulsion and maneuverability problems that plague conventional UUVs.

Inspired by the real tuna, BIOSwimmer™ is a UUV designed for high maneuverability in harsh environments, with a flexible aft section and appropriately placed sets of pectoral and other fins. For those cluttered and hard-to-reach underwater places where inspection is necessary, the tuna-inspired frame is an optimal design. It can inspect the interior voids of ships such as flooded bilges and tanks, and hard to reach external areas such as steerage, propulsion and sea chests. It can also inspect and protect harbors and piers, perform area searches and carry out other security missions.

Boston Engineering Corporation's Advanced Systems Group (ASG) in Waltham, Massachusetts, is developing the BIOSwimmer™ for Homeland Security's Science and Technology Directorate. "It's designed to support a variety of tactical missions and with its interchangeable sensor payloads and reconfigurable Operator Controls, and can be optimized on a per-mission basis," says the Director of ASG, Mike Rufo.

BIOSwimmer™ is battery-powered and designed for long-duration operation. Like other unmanned underwater vehicles, it uses an onboard computer suite for navigation, sensor processing, and communications. Its Operator Control Unit is laptop-based and provides intuitive control and simple, mission-defined versatility for the user. A unique aspect of this system is the internal components and external sensing which are designed for the challenging environment of constricted spaces and high viscosity fluids

"It's all about distilling the science," says David Taylor, program manager for the BIOSwimmer™ in S&T's Borders and Maritime Security Division. "It's called 'biomimetics.' We're using nature as a basis for design and engineering a system that works exceedingly well.

Tuna have had millions of years to develop their ability to move in the water with astounding efficiency. Hopefully we won't take that long."

Background

Biologically inspired robotics (biomimetic robotry) is a fairly new science that is gaining steam. There are now robotic lobsters, flies, geckos, moths, clams, dogs, and even a lamprey-like robot, all being designed to perform a variety of missions including surveillance and search and rescue. Robotics based on sinuous snakes and elephant trunks, for example, may be the ideal way to search for survivors inside the rubble of structures destroyed by explosions or natural disasters.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Homeland Security's Science & Technology Directorate, via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/y3Nxn9ozYEk/120919190102.htm
--
Manage subscription | Powered by rssforward.com
17.47 | 0 komentar | Read More

NASA Mars rover targets unusual rock enroute to first destination

ScienceDaily (Sep. 19, 2012) — NASA's Mars rover Curiosity has driven up to a football-size rock that will be the first for the rover's arm to examine.

Curiosity is about 8 feet (2.5 meters) from the rock. It lies about halfway from the rover's landing site, Bradbury Landing, to a location called Glenelg. In coming days, the team plans to touch the rock with a spectrometer to determine its elemental composition and use an arm-mounted camera to take close-up photographs.

Both the arm-mounted Alpha Particle X-Ray Spectrometer and the mast-mounted, laser-zapping Chemistry and Camera Instrument will be used for identifying elements in the rock. This will allow cross-checking of the two instruments.

The rock has been named "Jake Matijevic." Jacob Matijevic (mah-TEE-uh-vik) was the surface operations systems chief engineer for Mars Science Laboratory and the project's Curiosity rover. He passed away Aug. 20, at age 64. Matijevic also was a leading engineer for all of the previous NASA Mars rovers: Sojourner, Spirit and Opportunity.

Curiosity now has driven six days in a row. Daily distances range from 72 feet to 121 feet (22 meters to 37 meters).

"This robot was built to rove, and the team is really getting a good rhythm of driving day after day when that's the priority," said Mars Science Laboratory Project Manager Richard Cook of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The team plans to choose a rock in the Glenelg area for the rover's first use of its capability to analyze powder drilled from interiors of rocks. Three types of terrain intersect in the Glenelg area -- one lighter-toned and another more cratered than the terrain Curiosity currently is crossing. The light-toned area is of special interest because it retains daytime heat long into the night, suggesting an unusual composition.

"As we're getting closer to the light-toned area, we see thin, dark bands of unknown origin," said Mars Science Laboratory Project Scientist John Grotzinger of the California Institute of Technology, Pasadena. "The smaller-scale diversity is becoming more evident as we get closer, providing more potential targets for investigation."

Researchers are using Curiosity's Mast Camera (Mastcam) to find potential targets on the ground. Recent new images from the rover's camera reveal dark streaks on rocks in the Glenelg area that have increased researchers' interest in the area. In addition to taking ground images, the camera also has been busy looking upward.

On two recent days, Curiosity pointed the Mastcam at the sun and recorded images of Mars' two moons, Phobos and Deimos, passing in front of the sun from the rover's point of view. Results of these transit observations are part of a long-term study of changes in the moons' orbits. NASA's twin Mars Exploration Rovers, Spirit and Opportunity, which arrived at Mars in 2004, also have observed solar transits by Mars' moons. Opportunity is doing so again this week.

"Phobos is in an orbit very slowly getting closer to Mars, and Deimos is in an orbit very slowly getting farther from Mars," said Curiosity's science team co-investigator Mark Lemmon of Texas A&M University, College Station. "These observations help us reduce uncertainty in calculations of the changes."

In Curiosity's observations of Phobos this week, the time when the edge of the moon began overlapping the disc of the sun was predictable to within a few seconds. Uncertainty in timing is because Mars' interior structure isn't fully understood.

Phobos causes small changes to the shape of Mars in the same way Earth's moon raises tides. The changes to Mars' shape depend on the Martian interior which, in turn, cause Phobos' orbit to decay. Timing the orbital change more precisely provides information about Mars' interior structure.

During Curiosity's two-year prime mission, researchers will use the rover's 10 science instruments to assess whether the selected field site inside Gale Crater ever has offered environmental conditions favorable for microbial life.

For more about Curiosity, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl. You can follow the mission on Facebook and Twitter at: http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by NASA/Jet Propulsion Laboratory.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/y4WTxiUu07w/120919201958.htm
--
Manage subscription | Powered by rssforward.com
17.47 | 0 komentar | Read More

Revolutionary ultrathin, flat lens: Smartphones as thin as a credit card?

ScienceDaily (Sep. 19, 2012) — Scientists are reporting development of a revolutionary new lens -- flat, distortion-free, so small that more than 1,500 would fit across the width of a human hair -- capable in the future of replacing lenses in applications ranging from cell phones to cameras to fiber-optic communication systems. The advance, which could lead to smart phones as thin as a credit card, appears in ACS' journal Nano Letters.

Federico Capasso and colleagues explain that the lenses used to focus light in eyeglasses, microscopes and other products use the same basic technology dating to the late 1200s, when spectacle lenses were introduced in Europe. Existing lenses are not thin or flat enough to remove distortions, such as spherical aberration, astigmatism and coma, which prevent the creation of a sharp image. Correction of those distortions requires complex solutions, such as multiple lenses that increase weight and take up space. To overcome these challenges, the scientists sought to develop a new superthin, flat lens.

Although the new lens is ultra-thin, it has a resolving power that actually approaches the theoretical limits set by the laws of optics. The lens surface is patterned with tiny metallic stripes which bend light differently as one moves away from the center, causing the beam to sharply focus without distorting the images. The current version of the lens works at a specific design wavelength, but the scientists say it can be redesigned for use with broad-band light.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by American Chemical Society.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Francesco Aieta, Patrice Genevet, Mikhail A. Kats, Nanfang Yu, Romain Blanchard, Zeno Gaburro, Federico Capasso. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 2012; 12 (9): 4932 DOI: 10.1021/nl302516v

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/IPo8vDKazkQ/120919125606.htm
--
Manage subscription | Powered by rssforward.com
13.35 | 0 komentar | Read More

Thermoelectric material is the best at converting heat waste to electricity

ScienceDaily (Sep. 19, 2012) — Northwestern University scientists have developed a thermoelectric material that is the best in the world at converting waste heat to electricity. This is very good news once you realize nearly two-thirds of energy input is lost as waste heat.

The material could signify a paradigm shift. The inefficiency of current thermoelectric materials has limited their commercial use. Now, with a very environmentally stable material that is expected to convert 15 to 20 percent of waste heat to useful electricity, thermoelectrics could see more widespread adoption by industry.

Possible areas of application include the automobile industry (much of gasoline's potential energy goes out a vehicle's tailpipe), heavy manufacturing industries (such as glass and brick making, refineries, coal- and gas-fired power plants) and places were large combustion engines operate continuously (such as in large ships and tankers).

Waste heat temperatures in these areas can range from 400 to 600 degrees Celsius (750 to 1,100 degrees Fahrenheit), the sweet spot for thermoelectrics use.

The new material, based on the common semiconductor lead telluride, is the most efficient thermoelectric material known. It exhibits a thermoelectric figure of merit (so-called "ZT") of 2.2, the highest reported to date. Chemists, physicists, material scientists and mechanical engineers at Northwestern and Michigan State University collaborated to develop the material.

The study will be published Sept. 20 by the journal Nature.

"Our system is the top-performing thermoelectric system at any temperature," said Mercouri G. Kanatzidis, who led the research and is a senior author of the paper. "The material can convert heat to electricity at the highest possible efficiency. At this level, there are realistic prospects for recovering high-temperature waste heat and turning it into useful energy."

Kanatzidis is Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences. He also holds a joint appointment at Argonne National Laboratory.

"People often ask, what is the energy solution?" said Vinayak P. Dravid, one of Kanatzidis' close collaborators. "But there is no unique solution -- it's going to be a distributed solution. Thermoelectrics is not the answer to all our energy problems, but it is an important part of the equation."

Dravid is the Abraham Harris Professor of Materials Science and Engineering at the McCormick School of Engineering and Applied Science and a senior author of the paper.

Other members of the team and authors of the Nature paper include Kanishka Biswas, a postdoctoral fellow in Kanatzidis' group; Jiaqing He, a postdoctoral member in Dravid's group; David N. Seidman, Walter P. Murphy Professor of Materials Science and Engineering at Northwestern; and Timothy P. Hogan, professor of electrical and computer engineering, at Michigan State University.

Even before the Northwestern record-setting material, thermoelectric materials were starting to get better and being tested in more applications. The Mars rover Curiosity is powered by lead telluride thermoelectrics (although it's system has a ZT of only 1, making it half as efficient as Northwestern's system), and BMW is testing thermoelectrics in its cars by harvesting heat from the exhaust system.

"Now, having a material with a ZT greater than two, we are allowed to really think big, to think outside the box," Dravid said. "This is an intellectual breakthrough."

"Improving the ZT never stops -- the higher the ZT, the better," Kanatzidis said. "We would like to design even better materials and reach 2.5 or 3. We continue to have new ideas and are working to better understand the material we have."

The efficiency of waste heat conversion in thermoelectrics is governed by its figure of merit, or ZT. This number represents a ratio of electrical conductivity and thermoelectric power in the numerator (which need to be high) and thermal conductivity in the denominator (which needs to be low).

"It is hard to increase one without compromising the other," Dravid said. These contradictory requirements stalled the progress towards a higher ZT for many years, where it was stagnant at a nominal value of 1.

Kanatzidis and Dravid have pushed the ZT higher and higher in recent years by introducing nanostructures in bulk thermoelectrics. In January 2011, they published a report in Nature Chemistry of a thermoelectric material with a ZT of 1.7 at 800 degrees Kelvin. This was the first example of using nanostructures (nanocrystals of rock-salt structured strontium telluride) in lead telluride to reduce electron scattering and increase the energy conversion efficiency of the material.

The performance of the new material reported now in Nature is nearly 30 percent more efficient than its predecessor. The researchers achieved this by scattering a wider spectrum of phonons, across all wavelengths, which is important in reducing thermal conductivity.

"Every time a phonon is scattered the thermal conductivity gets lower, which is what we want for increased efficiency," Kanatzidis said.

A phonon is a quantum of vibrational energy, and each has a different wavelength. When heat flows through a material, a spectrum of phonons needs to be scattered at different wavelengths (short, intermediate and long).

In this work, the researchers show that all length scales can be optimized for maximum phonon scattering with minor change in electrical conductivity. "We combined three techniques to scatter short, medium and long wavelengths all together in one material, and they all work simultaneously," Kanatzidis said. "We are the first to scatter all three at once and at the widest spectrum known. We call this a panoscopic approach that goes beyond nanostructuring."

"It's a very elegant design," Dravid said.

In particular, the researchers improved the long-wavelength scattering of phonons by controlling and tailoring the mesoscale architecture of the nanostructured thermoelectric materials. This resulted in the world record of a ZT of 2.2.

The successful approach of integrated all-length-scale scattering of phonons is applicable to all bulk thermoelectric materials, the researchers said.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Northwestern University, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Kanishka Biswas, Jiaqing He, Ivan D. Blum, Chun-I Wu, Timothy P. Hogan, David N. Seidman, Vinayak P. Dravid, Mercouri G. Kanatzidis. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012; 489 (7416): 414 DOI: 10.1038/nature11439

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/UXD0Myrzkno/120919135310.htm
--
Manage subscription | Powered by rssforward.com
13.06 | 0 komentar | Read More

Experiment corrects prediction in quantum theory

ScienceDaily (Sep. 19, 2012) — An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe.

Much of what we know about quantum mechanics is theoretical and tested via computer modeling because quantum systems, like electrons whizzing around the nucleus of an atom, are difficult to pin down for observation. One can, however, slow particles down and catch them in the quantum act by subjecting them to extremely cold temperatures. New research, published in the Sept. 20 edition of the journal Nature, describes how this freeze-frame approach was recently used to overturn an accepted rule of thumb in quantum theory.

"We are in the age of quantum mechanics," said Neil Sullivan, a UF physics professor and director of the National High Magnetic Field Laboratory High B/T Facility on the UF campus -- home of the Microkelvin lab where experiments can be conducted in near-absolute zero temperatures. "If you've had an MRI, you have made use of a quantum technology."

The magnet that powers an MRI scanner is a superconducting coil transformed into a quantum state by very cold liquid helium. Inside the coil, electric current flows friction free.

Quantum magnets and other strange, almost otherworldly occurrences in quantum mechanics could inspire the next big breakthroughs in computing, alternative energy and transportation technologies such as magnetic levitating trains, Sullivan said. But innovation cannot proceed without a proper set of guidelines to help engineers navigate the quantum road.

That's where the Microkelvin lab comes in. It is one of the few facilities in the world equipped to deliver the extremely cold temperatures needed to slow what Sullivan calls the "higgledy-piggledy" world of quantum systems at normal temperatures to a manageable pace where it can be observed and manipulated.

"Room temperature is approximately 300 kelvin," Sullivan said. "Liquid hydrogen pumped into a rocket at the Kennedy Space Center is at 20 kelvin."

Physicists need to cool things down to 1 millikelvin, one thousandth of a kelvin above absolute zero, or -459.67 degrees Fahrenheit, to bring matter into a different realm where quantum properties can be explored.

One fundamental state of quantum mechanics that scientists are keen to understand more fully is a fragile, ephemeral phase of matter called a Bose-Einstein Condensate. In this state, individual particles that make up a material begin to act as a single coherent unit. It's a tricky condition to induce in a laboratory setting, but one that researchers need to explore if technology is ever to fully exploit the properties of the quantum world.

Two theorists, Tommaso Roscilde at the University of Lyon, France, and Rong Yu from Rice University in Houston, developed the underlying ideas for the study and asked a colleague, Armando Paduan-Filho from the University of Sao Paulo in Brazil, to engineer the crystalline sample used in the experiment.

"Our measurements definitively tested an important prediction about a particular behavior in a Bose-Einstein Condensate," said Vivien Zapf, a staff scientist at the National High Magnetic Field Laboratory at Los Alamos and a driving force behind the international collaboration.

The experiment monitored the atomic spin of subatomic particles called bosons in the crystal to see when the transition to Bose-Einstein Condensate was achieved, and then further cooled the sample to document the exact point where the condensate properties decayed. They observed the anticipated phenomenon when they took the sample down to 1 millikelvin.

The crystal used in the experiment had been doped with impurities in an effort to create more of a real world scenario, Zapf said. "It's nice to know what happens in pure samples, but the real world, is messy and we need to know what the quantum rules are in those situations."

Having performed a series of simulations in advance, they knew that the experiment would require them to generate temperatures down to 1 millikelvin.

"You have to go to the Microkelvin Laboratory at UF for that," she said. The lab is housed within the National High Magnetic Field Laboratory High B/T Facility at UF, funded by the National Science Foundation. Other laboratories can get to the extreme temperature required, but none of them can sustain it long enough to collect all of the data needed for the experiment.

"It took six months to get the readings," said Liang Yin, an assistant scientist in the UF physics department who operated the equipment in the Microkelvin lab. "Because the magnetic field we used to control the wave intensity in the sample also heats it up. You have to adjust it very slowly."

Their findings literally rewrote the rule for predicting the conditions under which the transition would occur between the two quantum states.

"All the world should be watching what happens as we uncover properties of systems at these extremely low temperatures," Sullivan said. "A superconducting wire is superconducting because of this Bose-Einstein Condensation concept. If we are ever to capitalize on it for quantum computing or magnetic levitation for trains, we have to thoroughly understand it."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of Florida. The original article was written by Donna Hesterman.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Rong Yu, Liang Yin, Neil S. Sullivan, J. S. Xia, Chao Huan, Armando Paduan-Filho, Nei F. Oliveira Jr, Stephan Haas, Alexander Steppke, Corneliu F. Miclea, Franziska Weickert, Roman Movshovich, Eun-Deok Mun, Brian L. Scott, Vivien S. Zapf, Tommaso Roscilde. Bose glass and Mott glass of quasiparticles in a doped quantum magnet. Nature, 2012; 489 (7416): 379 DOI: 10.1038/nature11406

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/bu70f71_i3M/120919135312.htm
--
Manage subscription | Powered by rssforward.com
12.36 | 0 komentar | Read More

Single-atom writer a landmark for quantum computing

ScienceDaily (Sep. 19, 2012) — A research team led by Australian engineers has created the first working quantum bit based on a single atom in silicon, opening the way to ultra-powerful quantum computers of the future.

In a landmark paper published September 19 in the journal Nature, the team describes how it was able to both read and write information using the spin, or magnetic orientation, of an electron bound to a single phosphorus atom embedded in a silicon chip.

"For the first time, we have demonstrated the ability to represent and manipulate data on the spin to form a quantum bit, or 'qubit', the basic unit of data for a quantum computer," says Scientia Professor Andrew Dzurak. "This really is the key advance towards realising a silicon quantum computer based on single atoms."

Dr Andrea Morello and Professor Dzurak from the UNSW School of Electrical Engineering and Telecommunications lead the team. It includes researchers from the University of Melbourne and University College, London.

"This is a remarkable scientific achievement -- governing nature at its most fundamental level -- and has profound implications for quantum computing," says Dzurak.

Dr Morello says that quantum computers promise to solve complex problems that are currently impossible on even the world's largest supercomputers: "These include data-intensive problems, such as cracking modern encryption codes, searching databases, and modelling biological molecules and drugs."

The new finding follows on from a 2010 study also published in Nature, in which the same UNSW group demonstrated the ability to read the state of an electron's spin. Discovering how to write the spin state now completes the two-stage process required to operate a quantum bit.

The new result was achieved by using a microwave field to gain unprecedented control over an electron bound to a single phosphorus atom, which was implanted next to a specially-designed silicon transistor. Professor David Jamieson, of the University of Melbourne's School of Physics, led the team that precisely implanted the phosphorus atom into the silicon device.

UNSW PhD student Jarryd Pla, the lead author on the paper, says: "We have been able to isolate, measure and control an electron belonging to a single atom, all using a device that was made in a very similar way to everyday silicon computer chips."

As Dr Morello notes: "This is the quantum equivalent of typing a number on your keyboard. This has never been done before in silicon, a material that offers the advantage of being well understood scientifically and more easily adopted by industry. Our technology is fundamentally the same as is already being used in countless everyday electronic devices, and that's a trillion-dollar industry."

The team's next goal is to combine pairs of quantum bits to create a two-qubit logic gate -- the basic processing unit of a quantum computer.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of New South Wales, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Morton, David N. Jamieson, Andrew S. Dzurak, Andrea Morello. A single-atom electron spin qubit in silicon. Nature, 2012; DOI: 10.1038/nature11449

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/2-HJNcrcjAk/120919135305.htm
--
Manage subscription | Powered by rssforward.com
12.36 | 0 komentar | Read More

Using a laser to 'see' the smallest world: Powerful laser breathes new life into an old technology for studying atomic-level structures

ScienceDaily (Sep. 19, 2012) — A multi-university team has employed a high-powered laser based at UC Santa Barbara to dramatically improve one of the tools scientists use to study the world at the atomic level. The team used their amped-up electron paramagnetic resonance (EPR) spectrometer to study the electron spin of free radicals and nitrogen atoms trapped inside a diamond.

The improvement will pull back the veil that shrouds the molecular world, allowing scientists to study tiny molecules at a high resolution.

The team, which includes researchers from UCSB, University of Southern California (USC), and Florida State University, published its findings this week in Nature.

"We developed the world's first free-electron laser-powered EPR spectrometer," said Susumu Takahashi, assistant professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences, and lead author of the Nature paper. "This ultra high-frequency, high-power EPR system gives us extremely good time resolution. For example, it enables us to film biological molecules in motion."

By using a high-powered laser, the researchers were able to significantly enhance EPR spectroscopy, which uses electromagnetic radiation and magnetic fields to excite electrons. These excited electrons emit electromagnetic radiation that reveals details about the structure of the targeted molecules.

EPR spectroscopy has existed for decades. Its limiting factor is the electromagnetic radiation source used to excite the electrons -- it becomes more powerful at high magnetic fields and frequencies, and, when targeted, electrons are excited with pulses of power as opposed to continuous waves.

Until now, scientists performed pulsed EPR spectroscopy with a few tens of GHz of electromagnetic radiation. Using UCSB's free electron laser (FEL), which emits a pulsed beam of electromagnetic radiation, the team was able to use 240 GHz of electromagnetic radiation to power an EPR spectrometer.

"Each electron can be thought of as a tiny magnet that senses the magnetic fields caused by atoms in its nano-neighborhood," said Mark Sherwin, professor of physics and director of the Institute for Terahertz Science and Technology at UCSB. "With FEL-powered EPR, we have shattered the electromagnetic bottleneck that EPR has faced, enabling electrons to report on faster motions occurring over longer distances than ever before. We look forward to breakthrough science that will lay foundations for discoveries like new drugs and more efficient plastic solar cells."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of California - Santa Barbara.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. S. Takahashi, L.-C. Brunel, D. T. Edwards, J. van Tol, G. Ramian, S. Han, M. S. Sherwin. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser. Nature, 2012; 489 (7416): 409 DOI: 10.1038/nature11437

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/GcDQ_Z41sck/120919135415.htm
--
Manage subscription | Powered by rssforward.com
12.07 | 0 komentar | Read More

Can nanotubes tell of bridge collapse risk?

ScienceDaily (Sep. 19, 2012) — In August 2007, the I-35W Bridge over the Mississippi River in Minneapolis collapsed, killing 13 people and injuring 145. The collapse was attributed to a design deficiency that resulted in a gusset plate failing during ongoing construction work.

Now, an interdisciplinary team of researchers at the University of Delaware is developing a novel structural health monitoring system that could avert such disasters in the future.

Erik Thostenson and Thomas Schumacher, both affiliated faculty members in the UD Center for Composite Materials, have received a three-year $300,000 grant from the National Science Foundation to investigate the use of carbon nanotube composites as a kind of "smart skin" for structures.

In preliminary research, the two found that a carbon nanotube hybrid glass-fiber composite attached to small-scale concrete beams formed a continuous conductive skin that is exceptionally sensitive to changes in strain as well as to the development and growth of damage.

"This sensor can either be structural, where the layer of the fiber composite adds reinforcement to a deficient or damaged structure, or nonstructural, where the layer acts merely as a sensing skin," says Schumacher, who brings to the project knowledge of structural mechanics and health monitoring of large-scale structures.

Thostenson, whose expertise lies in materials processing and characterization for sensor applications, explains that because the nanotubes are so small, they can penetrate the polymer-rich area between the fibers of individual yarn bundles as well as the spaces between the plies of a fiber composite.

"The nanotubes become completely integrated into advanced fiber composite systems, imparting new functionality without altering the microstructure of the composite," he says.

Schumacher says the approach will address a major drawback of current SHM systems, which can cover only a finite number points.

"Selection of critical areas for monitoring remains subject to the owner's expertise," he explains. "The distributed sensing capability of the system we're developing significantly increases the chance of capturing hidden or localized micro-damage that can lead to catastrophic failure if not detected early."

Thostenson points out that a key advantage of this innovative sensor is that it can be bonded to existing structures of any shape or built into new structures during the fabrication and construction processes.

Based on their preliminary results, the researchers will now address such issues as sensor processing, characterization, and modeling as well as testing of components and complete structures.

Thostenson credits CCM with facilitating the kind of interdisciplinary approach that brought him and Schumacher together on the project. "It's truly a 50/50 collaboration that capitalizes on our complementary expertise," he says.

The two joke, though, about the specimen they tested at CCM during their exploratory work. "It was the smallest specimen I ever tested," says Schumacher, but the largest one Erik ever tested."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of Delaware, via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

19 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/fnwyYbgsQKg/120919103136.htm
--
Manage subscription | Powered by rssforward.com
11.36 | 0 komentar | Read More
Techie Blogger